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Summary

1. Remote sensing techniques offer an opportunity to improve biodiversity modelling and prediction world-

wide. Yet, to date, the weather station-based WorldClim data set has been the primary source of temperature

and precipitation information used in correlative species distribution models. WorldClim consists of grids inter-

polated from in situ station data recorded primarily from 1960 to 1990. Those data sets suffer from uneven geo-

graphic coverage, withmany areas of Earth poorly represented.

2. Here, we compare two remote sensing data sources for the purposes of biodiversity prediction: MERRA cli-

mate reanalysis data and AMSR-E, a pure remote sensing data source. We use these data to generate novel tem-

perature-based bioclimatic information and to model the distributions of 20 species of vertebrates endemic to

four regions of SouthAmerica: Amazonia, the Atlantic Forest, the Cerrado and Patagonia.We compare the bio-

climatic data sets derived fromMERRA andAMSR-E information with in situ station data and contrast species

distributionmodels based on these two products tomodels built withWorldClim.

3. Surface temperature estimates provided byMERRA andAMSR-E showed warm temperature biases relative

to the in situ data fields, but the reliability of these data sets varied in geographic space. Species distribution mod-

els derived from the MERRA data performed equally well (in Cerrado, Amazonia and Patagonia) or better

(Atlantic Forest) thanmodels built with theWorldClimdata. In contrast, the performance ofmodels constructed

with the AMSR-E data was similar to (Amazonia, Atlantic Forest, Cerrado) or worse than (Patagonia) that of

models built withWorldClim data.

4. Whereas this initial comparison assessed only temperature fields, efforts to estimate precipitation from remote

sensing information hold great promise; furthermore, other environmental data sets with higher spatial and tem-

poral fidelitymay improve upon these results.

Key-words: AMSR-E, ecological niche modelling, MERRA, remote sensing, South America,

species distributionmodelling,WorldClim

Introduction

Recent advances in bioinformatics and GIS technologies have

greatly facilitated the use of correlative, climate-based models

of species niches and distributions in biodiversity analyses

(Graham et al. 2004; Elith et al. 2006; Guralnick, Hill & Lane

2007; Anderson 2012). As a result, a large number of studies

now employ climate data to examine and predict the areas suit-

able for (and potentially occupied by) species across multiple

spatial and temporal scales (Carstens & Richards 2007;

Waltari et al. 2007; Carnaval et al. 2009; Nogu�es-Bravo 2009;

Svenning et al. 2011). These models primarily rely on a set of

highly useful temperature and precipitation grids built from

weather station data, theWorldClim data base (Hijmans et al.

2005); see also Kriticos et al. (2012). WorldClim consists of 19

global gridded data fields created from average monthly tem-

perature and precipitation measurements from weather sta-

tions across the world, including data from the Global

Historical Climate Network Dataset ver. 3 (GHCN; Lawri-

more et al. 2011), the World Meteorological Organization cli-

matological data base (WMO 1996) and country-specific

weather stations (Hijmans et al. 2005). To produce high-reso-

lution grids at up to 30 arc second resolution (roughly 1km),

the average monthly measurements were interpolated with

elevation as a covariate, using the ANUSPLIN software (Xu

& Hutchinson 2011). Bioclimatic variables, reflecting aspects

of temperature, precipitation and seasonality thereof, were

then derived from the interpolated monthly values. While the
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data have a long temporal range (usually from 1960 to 1990),

the spatial coverage provided by the ground station network

varies across regions:many arid, boreal and tropical areas have

significantly less dense coverage than temperate zones (Hij-

mans et al. 2005).

The field of remote sensing and its utility for climate assess-

ment have also witnessed rapid advancement over recent dec-

ades. Satellite remote sensing data sets are becoming

increasingly available at high spatial and temporal resolutions

and across various portions of the electromagnetic spectrum

(e.g. microwave, optical and infrared). In particular, the

remote sensing of fields related to conditions at the Earth’s sur-

face can support temperature and precipitation measurements

and provide a complete synoptic view of contemporaneous

and retrospective temperature and precipitation regimes over

large areas that otherwise could not be accessed (Adler et al.

2000; Justice et al. 2002; Jones et al. 2010). Remote sensing

data from satellite instruments are well suited for the regional-

to-global monitoring of surface temperature, providing large

areal coverage with high temporal fidelity. Moreover, micro-

wave instruments can operate day and night and are not lim-

ited by cloud cover, thus providing the unique capability for

acquiring spatially and temporally consistent records of sur-

face temperature and precipitation (Adler et al. 2000; Jones

et al. 2010).

Despite the fact that correlative species distribution models

(or ecological niche models; Peterson et al. 2011; Anderson

2012) are often developed at regional or continental extents,

the number of studies employing remote sensing data is still rel-

atively small; notable exceptions include Bradley & Fleishman

(2008), Buermann et al. (2008), Saatchi et al. (2008), Tuanmu

et al. (2010, 2011), Bisrat et al. (2012) and Papes�, Peterson &

Powell (2012). These pioneering studies have used remote sens-

ing data to characterize land cover and vegetation indices,

often in combination with WorldClim data, to improve

prediction of species ranges (reviews by Gillespie et al. 2008;

Boyd & Foody 2011; Cord et al. 2013). Unlike these studies,

we derive bioclimatic variables from remote sensing sources

and ask whether and how they lead to models of species distri-

butions different from those built from the widely used station-

based WorldClim data. Our ultimate goal is to explore new,

alternative ways to improve biodiversity prediction through

correlativemodels.

To do so, we create and explore two bioclimatic data sets

from temperature estimates from NASA data sets. The first is

derived from the Modern-Era Retrospective Analysis (MER-

RA, Schubert, Rood & Pfaendtner 1993; Rienecker et al.

2011), which incorporates remote sensing information and a

subset of the station-based data used in WorldClim within a

climate reanalysis framework (the GHCN; Lawrimore et al.

2011). The second is based on pure remote sensing information

(AMSR-E, Jones et al. 2010). The spatial resolution of these

data sets is coarse, although the temporal frequency of data

collection is high (i.e. near-daily observations at low latitudes).

The spatial resolution ofMERRA is 1/2 9 2/3 degree latitude

and longitude (55 9 75 km), while that of the AMSR-E grid-

ded temperature fields is 25 km (Fig. 1). In some regions,

weather stations used to interpolate theWorldClimmean tem-

perature fields are often several times more spatially dense (e.g.

in the highly populated Atlantic coast of Brazil and populated

coastal and Andean regions of Colombia, Ecuador and Vene-

zuela). However, in areas with sparse weather station coverage

(e.g. Amazonia and Patagonia, where stations are on average

200 and 100 km apart, respectively; Fig. 1), bioclimatic vari-

ables derived from remote sensing may be more useful in cap-

turing surface field variability relative to WorldClim. Given

the coarse resolution of the remote sensing data sets considered

herein, we implement a downscaling protocol of the associated

bioclimatic data layers. We employ a technique that replicates

the downscaling implemented in WorldClim to assess perfor-

mance of species distributionmodels at similar spatial scales.

To evaluate the accuracy of these novel experimental global

bioclimatic layers, we make two kinds of comparisons. Firstly,

as a direct assessment, we compare AMSR-E and MERRA

temperature estimates with independently obtained weather

station data. Secondly, as an indirect assessment and to explore

their contribution to species distribution modelling, we build

correlative distributionmodels for SouthAmerican vertebrates

in four regions with distinct climatic regimes and weather sta-

tion coverage: the Amazonian and Atlantic forests, the Cerra-

(a) (b)

Fig. 1. Maps of SouthAmerican surface weather stations. Stations a) used to createWorldClim, relative to raster cell sizes of bothAMSR-E (inset –
smaller pixels) and MERRA (inset – larger pixels, each of which make up six or 2 9 3 of the smaller pixels) and b) used to compare accuracies of

MERRA- and AMSR-E-based mean temperatures, overlaid with the South American regions studied (blue: Amazon; orange: Cerrado; violet:

Atlantic Forest; brown: Patagonia).
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do and Patagonia (Fig. 1b). Rather than a strict assessment

per se, the use of the models should be seen as an exploration

of whether the new predictor variables lead to different model

outcomes, and furthermore, whether the evaluation statistics

indicate that they may be resulting in more informative SDMs

given the locality data. Specifically, we compare the accuracy

of models built with temperature-based bioclimatic layers

derived from WorldClim (based on station data), MERRA

(derived via climate reanalysis) and AMSR-E (derived from

remote sensing observations), holding the precipitation data

constant.

Materials andmethods

ASSEMBLY OF MERRA AND AMSR-E DATA SETS

MERRA

The Modern-Era Retrospective Analysis for Research and Applica-

tions (MERRA) data set is a weather and climate reanalysis which fea-

tures the assimilation of modern-era remote sensing data (i.e. the

satellite-era from 1979 until present), with a special focus on assimila-

tion of the atmospheric components of the hydrological cycle (e.g.

water vapour and precipitation (Rienecker et al. 2011). MERRA

employs the Goddard Earth Observing System Model version 5

(GEOS-5) Atmospheric General Circulation Model and its atmo-

spheric data assimilation system. TheGEOS-5 data assimilation system

combinesmodel fieldswith observations distributed irregularly in space

and time into a temporally (1 h) and spatially consistentmeteorological

grid. Observational input data are utilized from a large array of in situ

and remote sensing data sets. Along with using a large selection of

remote sensing data sets as input, MERRA has an improved spatial

and temporal model resolution when compared with other global rea-

nalyses (Rienecker et al. 2011).

We utilized time-averaged hourly MERRA single-level tempera-

ture at 2 m above the displacement height. From these records,

we created monthly maximum and minimum temperatures, which

we converted to four bioclimatic temperature fields matching

those available through WorldClim. These are mean annual tem-

perature, temperature seasonality (SD 9 100), mean temperature

of warmest quarter and mean temperature of coldest quarter.

Reanalysis of temperature was provided at the native spatial reso-

lution of MERRA (1/2 9 2/3 degree latitude and longitude,

361 9 540 grid cells). Using ancillary information on elevation

and geopotential height from the Global Land One-km Base Ele-

vation Project (GLOBE) and MERRA, the native resolution tem-

perature fields from MERRA were downscaled to match the 1-

km spatial resolution of GLOBE using cubic convolution interpo-

lation, the elevational difference between geopotential height and

GLOBE, and the environmental lapse rate for still air (assumed

to decrease by 0�6°C per 100 m). We used MERRA data from

its inception in 1979 to 2000 to focus on the overlap with the

existing WorldClim data set, which employed weather station data

primarily from 1960 to 2000. While both MERRA and AMSR-E

data sets are global, for the AMSR-E data set (see below) we

made grids from tiles F and J from the 1 km GLOBE digital

elevation model (DEM), encompassing South and Central Amer-

ica from 13°N to 50°S. All bioclimatic grids generated for this

study can be freely downloaded from the Dryad repository

[doi:10.5061/dryad.5207q].

AMSR-E

The AdvancedMicrowave Scanning Radiometer on the Earth Observ-

ing System (AMSR-E) supported derivation of daily global land sur-

face temperatures spanning the mission period from 2003 to 2011

(Jones et al. 2010). The retrieval of near-daily temperature minima and

maxima is obtained by inversion of a simplified semi-physical radio-

metric model that uses morning and evening brightness temperature

observations (Jones et al. 2010). The temperature data set provides glo-

bal temperature retrievals over land for snow and ice-free non-frozen

conditions for periods of no precipitation. When compared with the

World Meteorological Organization surface station summary and

Atmospheric Infrared Sounder and Advanced Microwave Sounding

Unit (AIRS/AMSU) surface air temperature retrievals, Jones et al.

(2010) reported an expected accuracy of 1–3�5°C for the majority of

surface stations within vegetated areas, and thus potential biases intro-

duced by vegetation structure that may not be influencing air tempera-

ture should be limited to within the accuracymargin.

Descending (morning) and ascending (evening) orbital nodes from

AMSR-E’s temperature retrieval provide respective minima and max-

ima for temperature at approximately 2 m height (Jones et al. 2010).

Hence, we used the temperature observation from the morning and

evening satellite overpasses, converted these temperatures to average

monthly values, and then derived the same four bioclimatic tempera-

ture fields mentioned above. The grid resolution of the AMSR-E tem-

perature fields is approximately 25 km; we downscaled the fields to

1 kmusing cubic convolution interpolation (Richards& Jia 1998). This

downscaling followed that of the MERRA data set, except that the

geopotential height (in this case, MERRA topography) was replaced

by the 25-km EASE grid GLOBE DEM (Knowles 2001). Data were

generated from the 2003–2010AMSR-E observation period.

GROUND-VALIDATION OF MERRA AND AMSR-E

TEMPERATURE FIELDS

We assembled South American surface station data to ground-vali-

date the remote sensing-based temperature fields. For AMSR-E,

we used two primary sources: the GHCN (Lawrimore et al. 2011)

and the WMO climatological data base (WMO 1996). For MER-

RA, which has input from GHCN weather stations, we avoided

biasing conclusions using solely the WMO data base, and also dis-

carding all WMO records from stations located within 50 km of a

GHCN-listed station. Using the raw station data, we calculated

mean annual temperature (Bioclim 1; Hijmans et al. 2005) for each

station for comparison with the newly derived MERRA and

AMSR-E Bioclim 1 fields. Mean annual temperature was calcu-

lated as per Hijmans et al. (2005), only including stations with at

least 10 full years of data between 1960 and 2000. Because there is

no temporal overlap between the AMSR-E data (2003–2010) and

WorldClim (1960–2000) or MERRA (1979–2000), we used all

weather station data available post-2000 to quantify temperature

changes not captured by the latter two data sets. A substantial

increase in actual surface temperatures, if detected, would need to

be taken into account when comparing the two new data sets.

CORRELATIVE SPECIES DISTRIBUTIONS & MODEL

PERFORMANCE

To evaluate the impact of temperature-based bioclimatic variables

estimated from WorldClim, MERRA and AMSR-E, we created

and compared three sets of species distribution models per spe-
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cies, each differing only in the source of the temperature fields

used (mean annual temperature, temperature seasonality, mean

temperature of warmest quarter, mean temperature of coldest

quarter). The first set employed WorldClim temperature fields,

the second used the same four fields derived from the MERRA

data set and third set employed the same fields, but derived from

AMSR-E. All models also included four precipitation bioclimatic

variables from WorldClim (annual precipitation, precipitation sea-

sonality, precipitation of wettest quarter and precipitation of dri-

est quarter), for consistency. Correlative models were built for 20

South American vertebrates (11 frogs, four lizards and snakes

and five mammals), across the four study regions (Table 1). All

selected taxa were endemic to a single region to enable a better

understanding of the differences among remote sensing data sets

in different regions.

Correlative distribution models of each species were produced with

Maxent version 3�3�3k (Phillips, Anderson & Schapire 2006; Phillips &

Dud�ık 2008). Species distribution models relate known occurrences of

species to data describing landscape-level variation in environmental

parameters of importance to species’ distributional ecology. Maxent in

particular uses only presence records, contrasting them with pseudo-

absence/background data from the study area using a maximum

entropy algorithm to generate a relative suitability value, rescaled to

between 0 and 1. Locality data for amphibians and reptiles were taken

from published information (Carnaval et al. 2009) and personal field

records (M. Rodrigues, A. Carnaval, I. Prates, pers. comm.), while the

data for mammals were downloaded from the Arctos museum data

base (http://arctos.database.museum). TheArctos datawere rigorously

gathered: they were collected through field surveys in Patagonia by

researchers from the University of New Mexico between 2001 and

2007; all records were identified by specialists according to current tax-

onomy and a uniform set of diagnostic characters (Pardi~nas et al.

2011). Overall, the occurrence records ranged from 19 to 182 per spe-

cies (Table 2; Table S1). To lessen the effects of sampling bias (Reddy

& D�avalos 2003; Boria et al. 2014), we measured the geographical dis-

tance between each pair of records for a given species; when two

records were found within 10 km of each other, one was randomly

removed; the calculation was then repeated until no such pairs existed.

In each region, species distributions were modelled using the following

extents (Amazon: 13°N-18°S, 42°W-82°W; Atlantic Forest: 3°S-34°S,

34°W-58°W; Patagonia: 25°S-50°S, 48°W-78°W; Cerrado: 1°S-25°S,

34°W-65°W). The species selected for this exercise likely respond to

similar barriers to dispersal. Hence, although not species-specific, these

region-specific study regions for background sampling reduce the inclu-

sion of areas where species are absent for non-climatic reasons, likely

approximating assumptions of model building and evaluation more

closely (Anderson & Raza 2010; Anderson 2013). For each environ-

mental data set (WorldClim, MERRA and AMSR-E), we generated

five models per species, each based on a different set of training and

testing records (the ‘cross-validate’ option in Maxent, with k = 5 bins

and each record assigned to one bin at random; in each iteration, four

bins representing 80% of the occurrences were used to train the model;

and one bin holding 20% of records was withheld for testing); the out-

puts of these five replicates were then averaged. For simplicity in this

initial comparison among the bioclimatic variables used (WorldClim-,

MERRA- or AMRS-E-based), all otherMaxent settings (e.g. regulari-

zation multiplier, feature classes, maximum number of background

points, convergence threshold and maximum number of iterations)

were set to default.

To evaluate model performance, we plotted and examined test

AUC (the area under the ROC curve) for each species and envi-

ronmental data set combination. AUCs have been shown inappro-

priate for cross-species comparisons using presence–pseudoabsence

or presence-background data (Lobo, Jim�enez-Valverde & Real

2008). Our AUC-based comparisons of alternative models for the

same set of species are nonetheless valid because only the environ-

mental sources vary across models for each species; occurrence

data, extent, resolution and algorithm were held constant (Peterson

et al. 2011). To compare the AUC scores of the distinct models

built for each species, we considered the variance across the five

replicates for a given treatment. Because these replicates are not

independent, the variance was estimated through the sum of

squares multiplied by (n�1)/n, rather than divided by n�1 (Efron

& Tibshirani 1993; Anderson & Raza 2010; Shcheglovitova &

Anderson 2013). To examine whether an environmental data set

performed consistently better in a given region, we used our spe-

cies-specific results to compare each pair of average AUC values

(MERRA-based vs. WorldClim-based, MERRA-based vs. AMSR-

E-based and WorldClim-based vs. AMSR-E-based) and identify

which environmental data set resulted in the best performing mod-

els for each species. To evaluate the significance of these latter

results, we used a sign test (Sokal & Rohlf 1987) to compare the

results across all species in a given region, as well as across the

entire data set.

Results

Overall, the MERRA-based data set matches the weather sta-

tion data more closely than the AMSR-E-based estimates, but

both of them show geographical trends in over- or underesti-

mates. Both remote sensing data sets tend to over-estimate

temperature ranges in central and southern interior portions of

South America (across most of the region between Patagonia

and the other target areas; Fig. 2). Notably, the estimates from

AMSR-E show a strong overestimate in many areas of the

northern Andes. In fewer instances, theMERRA and AMSR-

Table 1. Species used in correlative distributionmodelling.

Species Region

Taxonomic

Group #Records

Allobates femoralis Amazon Amphibian 132

Ameeriga trivittata Amazon Amphibian 89

Anolis punctatus Amazon Lizard 182

Chatogekko amazonicus Amazon Lizard 49

Hypsiboas calcaratus Amazon Amphibian 74

Bothrops jararaca Atlantic Snake 88

Hypsiboas albomarginatus Atlantic Amphibian 33

Hypsiboas faber Atlantic Amphibian 27

Leposoma scincoides Atlantic Lizard 19

Proceratophrys boiei Atlantic Amphibian 74

Chelemysmacronyx Patagonia Mammal 19

Eligmodontiamorgani Patagonia Mammal 33

Eligmodontia typus Patagonia Mammal 37

Graomys griseoflavus Patagonia Mammal 18

Oligoryzomys longicaudatus Patagonia Mammal 29

Barycholos ternetzi Cerrado Amphibian 29

Chiasmocleis albopunctata Cerrado Amphibian 48

Dendrosophus cruzi Cerrado Amphibian 41

Eupemphix nattereri Cerrado Amphibian 71

Hypsiboas paranaiba Cerrado Amphibian 32
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E-based data sets suggest colder temperatures relative to the

weather station records. The ground-validation of the MER-

RA-based estimates is particularly encouraging in the central

and eastern Amazon, the central Atlantic Forest and Pata-

gonia. Fair correspondence between estimated values based on

the AMSR-E data set and the weather station data is observed

in Amazonia and Patagonia, but not in the Atlantic Forest.

Overall, the warm bias in both data sets cannot be explained

by the slight increase in temperatures observed between the

1900s (WorldClim’s temporal extent) and the 2000s (AMSR-

E’s temporal extent; Fig. 2c).

The two novel sets of bioclimatic grids are strikingly differ-

ent from the WorldClim temperature layers, and from each

other (Fig. 3). Temperature differences between MERRA-

derived layers andWorldClim aremost pronounced in the cen-

tral and southern interior portion of the continent, where

MERRA-derived temperatures are higher than WorldClim

estimates. AMSR-E-derived temperature estimates, in turn,

are substantially higher than WorldClim values in the Caat-

inga and most of the Andes. Moreover, the MERRA-based

data set suggests higher temperature seasonality relative to

WorldClim across much of Amazonia and southern South

America, while the AMSR-E-based data set suggests higher

seasonality in the Caatinga, Patagonia, the Llanos in north-

western SouthAmerica and other dry and generally open areas

of northeastern Brazil. The AMSR-E-based data also suggest

Table 2. Overall and regional rank comparisons of average AUC scores, using sign tests for every pairwise comparison of bioclimatic data sets for

temperature. Significantly different rank comparisons are in bold. Note that for the overall comparison, MERRA outperforms AMSR-E for 14/20

species pairs, almost reaching statistical significance.

Comparison Outperforming data set Species pairs performance comparisons P-value

Overall WorldClim vs.MERRA None MERRA >WorldClim in 12/20 species 0�252
WorldClim vs. AMSR-E None WorldClim >AMSR-E in 13/20 species 0�132
MERRAvs. AMSR-E None MERRA >AMSR-E in 14/20 species 0�058

Amazon WorldClim vs.MERRA None WorldClim >MERRA in 3/5 species 0�5
WorldClim vs. AMSR-E None WorldClim >AMSR-E in 3/5 species 0�5
MERRAvs. AMSR- E None MERRA >AMSR-E in 3/5 species 0�5

Atlantic Forest WorldClim vs.MERRA MERRA MERRA>WorldClim in 5/5 species 0�031
WorldClim vs. AMSR-E None WorldClim >AMSR-E in 3/5 species 0�5
MERRAvs. AMSR-E None MERRA >AMSR-E in 4/5 species 0�188

Patagonia WorldClim vs.MERRA None WorldClim >MERRA in 4/5 species 0�188
WorldClim vs. AMSR-E WorldClim WorldClim>AMSR-E in 5/5 species 0�031
MERRAvs. AMSR- E None AMSR-E >MERRA in 3/5 species 0�5

Cerrado WorldClim vs.MERRA None MERRA >WorldClim in 4/5 species 0�188
WorldClim vs. AMSR-E None WorldClim >AMSR-E in 3/5 species 0�5
MERRAvs. AMSR- E None MERRA >AMSR-E in 4/5 species 0�188

(a) (b) (c)

Fig. 2. Ground-validation of MERRA and AMSR-E data relative to mean ground temperatures recorded at 1006 weather stations (years 1950–
2000) by the Global Historical ClimatologyNetwork and theWorldMeteorological Organization. Each dot represents a weather station; colours in

a) and b) depict the net difference between respective MERRA and AMSR-E estimated temperatures and recorded ground temperature and those

in c) indicate the difference in mean temperature recorded at surface weather stations between the more heavily sampled 1950–2000 period and the

2003–2008 period. Green boundaries outline the SouthAmerican regions examined in the study.

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution
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lower seasonality in the interior portion of the continent rela-

tive toWorldClim.

Species distribution models made from WorldClim, MER-

RA and AMSR-E temperature fields differ in performance

(e.g. Figs 4, 5; all model output maps are provided in Figs S1–

S20). However, the variation in average AUC scores for

individual species is always within two corrected standard

errors (Fig. 5, Table S2). Regional differences are nonetheless

observed: in the Atlantic Forest region, the performance of

MERRA-based models is significantly greater than those of

WorldClim-based models (Fig. 5, Table 2). In Patagonia, the

performance of WorldClim-based models is significantly

greater than those of AMSR-E-based models. In Amazonia

and the Cerrado, AUC values of WorldClim, MERRA and

AMSR-E-based models do not differ significantly. When the

results of all species are combined into a single sign test, no sig-

nificant differences are detected in the performance of models

built fromMERRA, AMSR-E orWorldClim-based data sets,

but the performance forMERRA is nearly significantly higher

than that of AMSR-E (Table 2).

Discussion

To test whether newly developed remote sensing data sets can

be used in correlative species distribution modelling, we have

compared AMSR-E andMERRA temperature estimates with

independently obtained weather station data and have built

distribution models for South American vertebrates in four

regions with distinct climatic regimes and weather station

coverage. Validation using data sets from weather stations,

Fig. 3. Differences across values of biocli-

matic variables for temperature estimated

from MERRA and AMSR-E data sets rela-

tive to WorldClim values. Left: difference

between MERRA-derived and WorldClim

values; right: difference between AMSR-E-

derived and WorldClim values. Four biocli-

matic variables are illustrated: Bioclim 1

(mean annual temperature), Bioclim 4 (tem-

perature seasonality), Bioclim 10 (mean tem-

perature of warmest quarter) and Bioclim 11

(mean temperature of coldest quarter; Hij-

mans et al. 2005). Values for Bioclim 1, 10 and

11 are given in degrees Celsius, whereas Bioc-

lim 4 values are percentages.

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution
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comparisons withWorldClim products and distributionmodel

comparisons consistently show that the relative performance

ofMERRA- andAMSR-E-derived data sets is region-specific.

This is not unexpected: the AMSR-E and MERRA data sets

differ in their temporal extent, native spatial resolution, the

degree to which data set derivatives reflect surface stations and

remote sensing inputs, and the nature of the retrievals. There is

an obvious positive bias in temperature estimates derived from

MERRA relative to the in situ station data and theWorldClim

data set throughout most of interior central and southern

South America. A previous study documented a general warm

and dry bias in the MERRA data set, particularly in low and

mid-latitude regions (Yi et al. 2011), attributing it to effects of

cloudiness and shortwave radiation. In contrast, the AMSR-E

data set fails to match weather station data accurately in the

Andes and differs substantially from WorldClim estimates in

the region – an expected result considering that the AMSR-E

temperature retrievals are limited to snow- and ice-free condi-

tions (Jones et al. 2010). It is thus not surprising to observe

that the AMSR-E-based models were outperformed by

WorldClim in the temperate Patagonian region (Fig. 4).

Notably, AMSR-E data sets indicated higher estimates of tem-

perature seasonality in dry but periodically wet, open areas in

several parts of the continent (e.g. the savannas of the Venezue-

lan and Colombian Llanos). These temperature patterns are

similar to those from Strahler et al.’s (1999) MODIS (Moder-

ate-resolution Imaging Spectroradiometer) land cover distri-

bution map, suggesting enhanced temperature sensitivity to

land cover effects that are not realistically captured by

WorldClim andMERRA.

The results of theMERRA-based analyses were nonetheless

encouraging. This data set enabled ground-validated estimates

of bioclimatic variables in regions of sparse weather station

coverage such as Amazonia and Patagonia. Yet, as the region-

based comparisons attest (Table 2), MERRA-based distribu-

tion models performed similarly to WorldClim-based models

in these areas. This outcome may be a result of the relatively

coarse native resolution of the MERRA product and suggests

that the interpolation technique used by WorldClim may be

sufficient and appropriate to overcome the lack of station

information in regions of little topographic complexity

(Hijmans et al. 2005).

0·99

0

AUC =
0·709

AUC =
0·823

AUC =
0·839

AMSR-E

AUC =
0·744

AUC =
0·880

AUC =
0·856

MERRA

AUC =
0·752

AUC =
0·765

AUC =
0·862

WorldClim

Anolis punctatus Hypsiboas faber Eligmodontia typus

Fig. 4. Selected species distribution models usingWorldClim (top panels), MERRA-derived (centre panels) and AMSR-E-derived (bottom panels)

bioclimatic variables for temperature and the same grids for precipitation (WorldClim). Examples include models focusing on the Amazon (left, for

the lizard Anolis punctatus), the Atlantic Forest (middle, for the frog Hypsiboas faber) and Patagonia (right, for the mammal Eligmodontia typus)

usingMaxent with logistic output, so that grey through green colours represent less suitable climatic conditions and blue and violet colours represent

more suitable ones. Dots indicate occurrences used.
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The MERRA data set also resulted in overall improved

AUCs for the Atlantic Forest, a weather station rich region

where WorldClim might be expected to outperform the other

environmental data sources. Predicted species distributions for

the Atlantic Forest frog Hypsiboas faber, for instance, show

clear differences depending on the environmental data set uti-

lized (Fig. 4). Specifically, the WorldClim-based model over-

predicts the species’ occurrence in inland portions of the

southern Atlantic Forest and nearby portions of the Cerrado,

an error not made by MERRA-based models. We posit that

there may be two alternative explanations for this. Because the

Atlantic Forest region is highly topographically complex, with

mountain ranges and valley systems running parallel to the

coast (Morellato & Haddad 2000), perhaps the interpolation

schemes used to create theWorldClim data set underestimated

real variations in temperature, which were in turn detected by

the MERRA climatological re-analysis and lapse rate down-

scaling. Such fine-grain differences indeed are likely to be

detected in the performance of distribution models in this

region, given the high spatial density of biological sampling.

Alternatively, it is possible that theMERRA-based bioclimatic

layers more accurately describe the environmental conditions

experienced in the Cerrado and interiorAtlantic Forest regions

that were incorrectly predicted as suitable by the WorldClim-

basedmodels.

While our study focuses solely on temperature data,

precipitation will certainly prove useful in future explora-

tions. In 12 of the 20 species studied, the most important

variable in the final models turned out to be a precipita-

tion variable, as indicated by model lambda values (Phil-

lips, Anderson & Schapire 2006). Therefore, any

improvements over current station-based estimates, affor-

ded using remote sensing data of precipitation, will likely

result in greater model improvements. Such precipitation

estimates are available from the TRMM (Tropical Rain-

fall Measuring Mission) data set (Huffman et al. 2007) at

4 km resolution, and this data set would be a prime can-

didate for consideration. Despite being limited to cloud-

free regions, and thus problematic in the tropics, MODIS

instrument data sets (King et al. 2003) also provide mea-

surements at a resolution of 1 km that might be well sui-

ted for distribution modelling. It is likely that amalgams

of data sets, where distinct data sources are used for dif-

ferent regions, will be needed to best leverage remote

sensing data sets; these combined data sources have the

best prospects for improving bioclimatic analyses (Turk &

Miller 2005).

We also foresee correlative distribution modelling tech-

niques broadening beyond the derivation of commonly

used bioclimatic variables, such as the ones explored here,

and incorporating novel variables. For example, remote

sensing will be invaluable to the characterization of

changes in diurnal environmental cycles that may be inti-

mately linked to animal movement and habitat use, or of

seasonal changes that drive migratory and dispersal

patterns. As with all correlative modelling, these novel bio-

climatic layers may not be direct causal drivers of species

distributions, but may increase the predictive power of

such models and thus generate better hypotheses for future

testing. Our initial results indicate that remote sensing

0
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0·3
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0·6
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WorldClim AUC MERRA AUC AMSR-E AUC

Fig. 5. Species and regional comparisons of averageAUC scores. Error bars indicate 1�96 9 the corrected standard error (see text).
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measures show promise, but that the amalgamation of

multiple remote sensing data sets, the improvement of tem-

poral windows and resolution, and the exploration of other

variables from satellite data (e.g. temperature extremes;

Ashcroft et al. 2014) are all avenues that can lead to more

accurate niche description and biodiversity modelling in

the very near future.
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